首頁  >  新聞動態  >  行業新聞

液氦 液氫 液氮 液氧及相關傳感器

作者:bet188官方网站     瀏覽量:1368    發布時間:2019-09-21

t01597e69bee7b6ed50

氦單質在極低溫度下由氣態氦轉變為液態氦。由於氦原子間的相互作用(範德華力)和原子質量都很小,很難液化,更難凝固。富同位素4He的氣液相變曲線的臨界溫度和臨界壓強分別為5.20K和2.26大氣壓,一個標準大氣壓下的溫度為4.215K.在常壓下,溫度從臨界溫度下降至絕對零度時,氦始終保持為液態,不會凝固,隻有在大於25大氣壓時才出現固態。
在2.18K時會有明顯的性質改變,如獲得超流性,被稱作He II,來與普通的液氦(He I)區別開。

物理性質

概述

氦在通常情況下為無色、無味的氣體;熔點-272.2℃(25個大氣壓),沸點-268.785℃;密度0.1785千克/升,臨界溫度-267.8℃,臨界壓力2.26大氣壓;水中溶解度8.61厘米³/千克水。氦是唯一不能在標準大氣壓下固化的物質。液態氦在溫度下降至2.18K時(HeⅡ),性質發生突變,成為一種超流體,能沿容器壁向上流動,熱傳導性為銅的800倍;其比熱容、表麵張力、壓縮性都是反常的。

液氦在一個大氣壓下密度為0.125 g/mL。氦有兩種天然同位素:氦3、氦4,自然界中存在的氦基本上全是氦4。
普通液氦是一種很易流動的無色液體,其表麵張力極小,折射率和氣體差不多,因而不易看到它。液態4He包括性質不同的兩個相,分別稱為HeⅠ和HeⅡ,在兩個相之間的轉變溫度處,液氦的密度、電容率和比熱容均呈現反常的增大。兩個液相HeⅠ和HeⅡ間的轉變溫度稱為λ點,飽和蒸氣壓下的λ點為2.172K,壓強增加時,λ點移向較低的溫度,兩個液相的相變曲線為一直線,稱為λ線。

超流體

液氦具有一係列引人注目的特點,主要表現在以下幾方麵。超流動性普通液體的粘滯度隨溫度的下降而增高,與此不同,HeⅠ的粘滯度在溫度下降到2.6K左右時,幾乎與溫度無關,其數值約為3×10-6帕秒,比普通液體的粘滯度小得多。在2.6K以下,HeⅠ的粘滯度隨溫度的降低而迅速下降。HeⅡ的粘滯度在λ點以下的溫度時立刻降至非常小的值(<10-12帕秒),這種幾乎沒有粘滯性的特性稱為超流動性。用粗細不同的毛細管做實驗時,發現流管愈細,超流動性就愈明顯,在直徑小於10-5厘米的流管中,流速與壓強差和流管長度幾乎無關,而僅取決於溫度,流動時不損耗動能。

氦膜任何與HeⅡ接觸的器壁上覆蓋一層液膜,液膜中隻包含無粘滯性的超流體成分,稱為氦膜。氦膜的存在使液氦能沿器壁向盡可能低的位置移動。將空的燒杯部分地浸於HeⅡ中時,燒杯外的液氦將沿燒杯外壁爬上杯口,並進入杯內,直至杯內和杯外液麵持平。反之,將盛有液氦的燒杯提出液氦麵時,杯內液氦將沿器壁不斷轉移到杯外並滴下。液氦的這種轉移的速率與液麵高度差、路程長短和障壁高度無關。

對HeⅡ性質的理論研究首先由F.倫敦作出。4He原子是自旋為整數的玻色子,倫敦把HeⅡ看成是由玻色子組成的玻色氣體,遵守玻色統計規律,玻色統計允許不同粒子處於同一量子態中。倫敦證明了存在一個臨界溫度Tc,當溫度低於Tc時,一些粒子會同時處於零點振動能狀態(即基態),稱為凝聚,溫度愈低,凝聚到零點振動能狀態的粒子數就愈多,在絕對零度時,全部粒子都凝聚到零點振動能狀態,以上現象稱為玻色-愛因斯坦凝聚。L.蒂薩認為HeⅡ的超流動性起因於玻色-愛因斯坦凝聚。由於已凝聚到基態的HeⅡ原子具有最低的零點振動能,故有極大的平均自由程,能夠幾乎無阻礙地通過極細的毛細管。蒂薩首先提出二流體型,後來L.D.朗道修正和補充了此模型。二流體模型認為HeⅡ由兩部分獨立的、可互相滲透的流體組成,一種是處於基態的凝聚部分,熵等於零,無粘滯性,是超流體;另一種是處於激發態(未凝聚)的正常流體,熵不等於零,有粘滯性。兩種流體的密度之和等於HeⅡ的總密度,溫度降至λ點時,正常流體開始部分地轉變為超流體,溫度愈低,超流體的密度愈大,而正常流體的密度則愈小,在絕對零度時,所有原子都處於凝聚狀態,全部流體均為超流體。利用這個二流體模型可解釋關於液氦的許多力學和熱學性質。

熱傳導性

HeⅠ具有普通流體的導熱率,因而當減小壓強時,液氦出現激烈的沸騰現象。HeⅡ的導熱率要比HeⅠ高出106倍,比銅高出104倍。當溫度越過λ點,HeⅠ轉變為HeⅡ時,液氦從很壞的熱導體突然變為到目前為止最好的熱導體。由於HeⅡ的導熱率異乎尋常地高,其內部不可能出現溫差,因而內部不可能汽化,即不能沸騰。當利用抽氣方法減低蒸氣壓時,開始階段出現激烈的沸騰,溫度降低至λ點以下時,HeⅠ轉變為HeⅡ,沸騰突然停止,液麵平靜如鏡,汽化隻發生在液麵。正常流體的導熱率與溫度梯度無關,純粹是反映物質性質的量,但HeⅡ的導熱率卻與溫度梯度甚至容器的幾何形狀有關。

熱效應

包括機-熱和熱-機兩種效應。盛有液氦的兩個容器用極細的毛細管C連通,注入液氦,溫度低於λ點,右側液麵高於左側,形成壓強差Δp.液氦中低熵超流成分能從右側通過毛細管轉移到左側,而高熵的正常成分不能通過毛細管。這導致右側液氦的熵增加,左側的熵減少,這意味著右側溫度升高而左側溫度降低。這種由機械力引起的熱量遷移稱為機-熱效應。機-熱效應的逆過程稱為熱-機效應。右側液氦受熱後(吸熱Q),低熵的超流成分減少,左側液氦中的超流成分通過毛細管流向右側,而正常成分不能通過毛細管,這導致右側液麵升高形成壓強差。熱-機效應的"噴泉"裝置。帶毛細管噴嘴的無底玻璃管的填充金剛砂粉末P,用棉花C塞住底部,浸入液氦中。用光照射玻璃管,使管內的液氦溫度升高,超流成分激發成正常成分。管外的超流成分通過棉花塞向管內轉移,形成內外壓強差,液氦從噴嘴噴出。

第二聲波

普通流體中的聲波是由密度交替變化形成的,稱密度波。1941年朗道發展了量子液體的流體動力學,預言在HeⅡ中除普通密度波(稱第一聲波)外,還存在另一種聲波,它是由液氦中超流成分(低熵,溫度較低)與正常流體成分(高熵,溫度較高)的相對運動形成的,稱為溫度波或熵波(第二聲波)。實驗證實了溫度波的存在。

同位素

3He是4He的同位素,在天然氦中所占比例小於10-7,通過人工核反應可得足夠數量的3He.3He的臨界溫度和臨界壓強分別為3.34K和1.17大氣壓。與4He一樣,在常壓下液態3He不會固化,在絕對零度附近需加34個大氣壓才能固化。1972年,D.D.奧舍羅夫等人在2mK低溫下發現了兩個3He的液態新相,分別稱為3He-A和3He-B,它們均為超流態。液態3He和4He在0.87K以上溫度時完全互溶,在該溫度以下則分離成兩相,按3He所占比例的多少分別稱為濃相(含3He較多)和稀相(含3He較少),濃相浮於稀相之上(因3He比4He輕)。3He原子從濃相通過界麵進入稀相時要吸熱,這就是稀釋致冷機的工作原理(見超低溫技術)。3He原子的電子總自旋為零,核自旋為1/2,故與電子一樣屬費米子,遵守費米-狄拉克統計,液態3He稱為費米液體,正常態的液態3He的性質可用朗道的費米液體理論描述。

化學性質

氦的化學性質穩定,幾乎不與其他任何元素化合。
理論上的確有一些氦的化合物在極低溫極高壓狀態下可以存在。
在光譜中可以觀測到HeH+(已知最強的酸),而HeH的激發態可以作為準分子存在。
詳見稀有氣體化合物。
用途

氦是最不活潑的元素,而且極難液化。氦的應用主要是作為保護
氦氣曾被用來當做熱氣球和飛艇的驅動力
氦氣曾被用來當做熱氣球和飛艇的驅動力
氣體、氣冷式核反應堆的工作流體和超低溫冷凍劑等等。氦氣在衛星飛船發射、導彈武器工業、低溫超導研究、半導體生產等方麵具有重要用途。
低溫超導技術

要說缺乏氦氣最嚴重的後果,也無非是嚴重阻礙低溫技術的應用,其中受到最大影響的就是低溫超導技術了。現在已知所有的超導材料都要在-130℃以下的低溫中才能表現出超導特性,其中應用最廣泛的那幾種(比如Nb3Sn)更是需要比液氫的沸點還低的轉變溫度,這時候隻有液氦能比較簡便地實現這樣的極低溫。雖然我們完全可以用別的辦法實現同樣的低溫,但都不如液氦實惠。顯然,假如我們沒有氦,低溫超導技術的普及就會受到嚴重的阻礙;低溫超導技術如果不能普及,醫院就會用不起核磁共振成像儀(它需要超導材料製造強磁場)。

資源分布

氦氣最主要的來源不是空氣,而是天然氣。原來氦氣在幹燥空氣中含量極微,平均隻有百萬分之五,天然氣中最高則可含7.5%的氦,是空氣的一萬五千倍。可是這種高氦的天然氣礦藏並不多,因為天然氣中的氦氣是鈾之類的放射性元素衰變的產物。隻有在天然氣礦附近有鈾礦時,氦氣才能在天然氣中彙集。
即使是氦氣含量很低的天然氣,也比空氣中氦氣含量高數萬倍,因此仍是目前世界上氦氣的主要來源。其中,美國氦氣資源占50%以上,中國僅占0.2%。
天然氣中的氦氣是鈾之類的放射性元素衰變的產物。隻有在天然氣礦附近有鈾礦時,氦氣才能在天然氣中彙集。美國生產的氦氣要占世界總產量的80%以上。
中國雖然也有一定的天然氣資源,可是到目前為止,唯有四川內江威遠的氣田曾得到提氦利用,其中的氦含量隻有0.2%,而且現在已經枯竭。
中國近年來對氦氣的需求量越來越大。受製於氦氣資源匱乏、提取氦氣的成本較高,中國在需求上一直依賴進口。
2007年,美國將氦氣核定為戰略物資而限製粗氦產量,導致全球液氦價格由原來60~80元/每升,上漲到目前200元/每升以上。
昂貴的液氦價格,使研究工作難以廣泛開展。專家預計,未來氦氣進口將更加受製於人,屆時可能會因為無液氦供應而使中國現有的許多涉及氦氣和液氦的科研項目無法實施。
三種途徑解除氦危機
最直接的辦法就是節流。現在醫院的核磁共振儀很多自身帶有密閉性很好、防止蒸發的液氦裝置,大大減少了液氦的需求量,先前的一些耗費液氦量大的儀器已經逐漸被淘汰。
更多的科學家嚐試用其他的製冷方式來代替液氦製冷。比如用無液氦的製冷機來達到超導磁體的工作溫度。相對於液氦製冷,製冷機的氦需求量很低(用作製冷機的製冷氣體),製冷機主要通過冷橋與磁體相連,采用的是熱傳導的製冷方式,而液氦主要是將磁體浸泡其中,對流製冷起很大作用。然而這種方法目前還沒有真正用於醫用核磁共振儀。有專家表示,液氦製冷的優勢現在比較明顯:製冷效果穩定,對於成像要求條件苛刻的醫用設備,這點很重要。製冷機的穩定性不如液氦,容易受到擾動影響,這對精確成像是不利的。但他也表示,隨著技術的進一步發展、成熟,製冷機代替液氦製冷也並非不可能。
發展高溫超導材料也是另一個可能的途徑。2009年10月18日在合肥舉行的國際磁體技術會議上,高溫超導成為與會專家的熱議話題。尋找優質的高溫超導材料,讓超導磁體能夠在液氮甚至更高的溫度下穩定工作,是核磁共振成像儀擺脫液氦的又一希望所在。
氦液化器

氦液化器隻能液化氣態氦,不能憑空製造出氦。
2010年中國采用五台G-M製冷機做冷源,成功研製出世界首台70升/天的4.2K G-M製冷機做冷源的小型氦液化器,其氦液化率達到73升/天(4.21K)、87升/天(4.5K)。經過對裝置的真空絕熱、輸液管結構和運行參數的進一步優化,該裝置近日運行測試,成功獲得了95升/天(4.2K)、105升/天(4.5K)的氦液化率,這一指標達到了采用小型低溫製冷機做冷源的同類小型氦液化裝置的世界最好水平。
該小型氦液化裝置可完成氦氣室溫回收和液化,在確保磁體電流引線不受影響的同時,實現液氦的零加注,使重離子加速器的離子源在節約氦的同時可連續不間斷運行,保證了大科學裝置的運行時間。該技術還可應用於科研院所低溫科學儀器的氦氣回收和液化,有效降低科研成本;也可在醫院的超導核磁譜儀中應用,降低醫療費用。

研究曆史

在上世紀初的幾十年裏,世界各國都在尋找氦氣資源,在當時主要是為了充飛艇。但是到了今天,氦不僅用在飛行上,尖端科學研究,現代化工業技術,都離不開氦,而且用的常常是液態的氦,而不是氣態的氦。液態氦把人們引到一個新的領域--低溫世界。
在液態空氣的溫度下,氦和氖仍然是氣體;在液態氫的溫度下,氖變成了固體,可是氦仍然是氣體。
要冷到什麼程度,氦才會變成液體呢?
英國物理學家杜瓦在1898年首先得到了液態氫。就在同一年,荷蘭的物理學家卡美林·奧涅斯也得到了液態氫。液態氫的沸點是零下253℃,在這樣低的溫度下,其他各種氣體不僅變成液體,而且都變成了固體。隻有氦是最後一個不肯變成液體的氣體。卡美林·奧涅斯決心把氦氣也變成液體。
1908年7月,卡美林·奧涅斯成功了,氦氣變成了液體。他第一次得到了320立方厘米的液態氦。
要得到液態氫,必須先把氫氣壓縮並且冷卻到液態空氣的溫度,然後讓它膨脹,使溫度進一步下降,氫氣就變成了液體。
液態氦是透明的容易流動的液體,就像打開了瓶塞的汽水一樣,不斷飛濺著小氣泡。
液態氦是一種與眾不同的液體,它在零下269℃就沸騰了。在這樣低的溫度下,氫也變成了固體,千萬不要使液態氦和空氣接觸,因為空氣會立刻在液態氦的表麵上凍結成一層堅硬的蓋子。
多少年來,全世界隻有荷蘭卡美林·奧涅斯的實驗室能製造液態氦。直到1934年,在英國盧瑟福那裏學習的前蘇聯科學家卡比查發明了新型的液氦機,每小時可以製造4升液態氦。以後,液態氦才在各國的實驗室中得到廣泛的研究和應用。
在今天,液態氦在現代技術上得到了重要的應用。例如要接收宇宙飛船發來的傳真照片或接收衛星轉播的電視信號,就必須用液態氦。接收天線末端的參量放大器要保持在液氦的低溫下,否則就不能收到圖像。
物理學家不僅僅得到了液態氦,還得到了固態氦,他們正在向絕對零度進軍(物理學把零下273.15℃叫做絕對零度。這個溫度標叫做絕對溫標,用K表示。0K就是-273.15℃,而273.15K就是0℃)。從理論上講,絕對零度是達不到的,但是可以不斷接近它。液態氫的沸點是絕對溫標20.2K,液態氦的沸點是絕對溫標4.2K。在絕對溫標2.18K的時候,氦Ⅰ變為氦Ⅱ。1935年,利用"絕熱去磁"法,使液態氦冷到絕對溫標0.0034K;1957年,達到絕對溫標0.00002K;目前已達到2.4×10K了。
天文學家也繼續研究著太陽元素。太陽上的氫"燃燒"變成了氦,以後的命運又如何呢?他們發現宇宙間有一些比太陽更熾熱的恒星,中心溫度達到幾億度。在這些恒星的核心,氫原子核已經都變成了氦原子核,氦原子核又相互碰撞,正在生成著碳原子核和氧原子核,同時放出大量的能。這類恒星橡心髒一樣,一會兒膨脹,一會兒收縮,很有規律。為什麼會這樣?這也是因為氦在起作用。
天文學家還研究了銀河係內氫的含量和氦的含量的比值。根據這個比值,有人估算了銀河係的年齡有一二百億年。
氦的曆史並沒有完,人類認識氦的曆史也沒有完,而我們這本講氦的故事的小冊子,卻不得不結束了。
要問在發現氦和研究氦的曆史上誰的功勞最大呢?是天文學家詹森和羅克耶嗎?是化學家拉姆賽和物理學家克魯克斯嗎?是發明分光鏡的本生與基爾霍夫嗎?當然還要考慮把空氣、氫氣以及氦氣液化的漢普鬆、卡美林·奧涅斯等人的功勞。
很難說。在人類認識氦的曆史上,他們都有著自己的貢獻。氦僅僅是一種元素,但是發現它和認識它,是許多門科學--物理學、天文學、化學、地質學等的共同勝利,決不是某一個人的力量能夠完成的。